This year, our research programme has been through a period of considerable change, and we’re really excited about our new direction.

In February this year we announced our new research strategy, which underpins our organisational ambition to tame prostate cancer in ten years. It goes without saying that this is a bold aim, and it will take a lot of work – and a lot of funding – to get there. However, it hasn’t come out of nowhere. We developed this strategy in consultation with a panel of experts and men with prostate cancer, and it’s firmly grounded in reality.

To help us deliver this ambitious plan, we’ve also changed the way we structure and time our funding of awards. We’ve moved away from awarding Project Grants and Pilot Awards towards the end of the financial year, and have launched our exciting new Research Innovation Awards.

These awards are a direct response to the steady rise in scale and ambition of the funding requests coming to us over the last few years. We want researchers to come to us with something we’ve never seen before; the outside the box thinking that could bring in the big rewards for men with prostate cancer.

The first awards under this new scheme will be made early in the 2016/17 financial year and will feature in next year’s report.

All of this has happened against a backdrop of game-changing funding opportunities that I’m looking forward to sharing with you throughout this review.

As ever, none of this would have been possible without the researchers, health care professionals, men affected by prostate cancer and of course those who raise funds for or donate to us. I’d like to say a special thanks to The Movember Foundation; our research funding partner whose support made many of these awards possible. Thank you also to the Mike Gooley Trailfinders Charity, for funding our first ever Travelling Prize Fellowship this year, and to our Pioneers – a group of exceptional individuals, whose commitment to invest in cutting-edge research will save men’s lives. You’ll see more information about becoming a Pioneer at the back of this review.

Dr Iain Frame
Director of Research
Prostate Cancer UK
Science in numbers

Funding by award type

- Translational awards: £2,014,771
- PhD studentships: £453,674
- Strategic awards to improve diagnosis: £310,206
- Travelling Prize Fellowship: £210,216
- Starter grant for Clinical Lecturers: £30,000

Funding by strategy arm

- Better diagnosis: £644,157
- Better treatment: £2,164,681
- Better diagnosis and better treatment: £126,050
- Better prevention: £83,979
What our funding achieved in 2015

Our researchers published 63 scientific papers acknowledging our funding.

Other researchers referenced our funded research 1,410 times in their own publications.

Our researchers filed two patent applications – the first step in developing a commercially viable product.

One of our researchers set up a spin-off company. This can sometimes be the quickest way to secure private investment and make the products of research more widely available.

Our researchers secured over £19m of follow-on grants from other funders to take research we’ve funded closer to benefiting men with prostate cancer.
Advanced prostate cancer is, and always has been, incurable. Now the researchers running the ADRRAD clinical trial as part of the Belfast-Manchester Movember Centre of Excellence are asking whether hitting the cancer with everything we’ve got from the point of diagnosis might help change that. In this trial, they’re testing a combination of hormone therapy, radiotherapy and radium-223.

We don’t know yet whether it will work. It certainly won’t all come out of this first study, which is a small scale trial to be sure that the combined treatments are safe, and that there’s enough evidence that they’ll be beneficial to take the research to the next stage.

What’s really exciting about this work is the scientific shift towards thinking of long-term benefit for men with advanced prostate cancer, not just a few extra months of life. Even better, the team is trying to achieve all this with drugs that already exist. If it’s successful, this should massively speed up the time it takes for men to benefit from this work.

They’re also asking whether blood samples from men taking part in the trial can give clues about each man’s cancer that might affect how well the treatment works for him. This should mean that by the time the researchers are ready to develop the next phase of the trial they’ll know who is most likely to benefit, and who might be better off trying another treatment approach. This type of personal approach will turn cancer treatment from a blunt force to a precise art.

Innovative collaboration

Another thing we’re particularly excited by is all the people, and all the expertise, it brings together to make this trial work. The clinical trial and some of the lab work is happening in Belfast, while another part of the lab work happens in Manchester. It involves prostate cancer experts working together with lung cancer experts. And finally, the scope and ambition of this trial show just what can happen when charities, industry and academic institutions work together to bring benefits to patients.

This is just one of the cards we’ll be playing over the next ten years as we work towards a world where men outlive their prostate cancer, and no-one experiences side effects from a treatment that ultimately isn’t going to benefit them.
Prostate Cancer UK
Translational Research Award

Our aim in funding research is to find answers that make tangible improvements for men affected by prostate cancer. Through our Translational Research Award scheme we aim to fund research that takes early stage basic discoveries that we or others have previously funded a stage closer to making a difference to men.

We are determined to ensure research that has the potential for widespread rollout for men affected by prostate cancer does not fail to make a difference just through a lack of funding needed to make the leap from bench to bedside or mouse to man.

The fantastic work that our supporters do as part of fundraising events like Jeff Stelling’s Men United March or the Distinguished Gentlemen’s Ride is essential to help us fund cutting-edge research like this.

We are also in negotiations for an additional Translational Research Award which we hope to tell you more about in the near future.

Professor Johann de Bono
The Institute of Cancer Research
£315,895
Developing a genetic test for aggressive prostate cancer

Professor de Bono’s project aims to make significant steps towards tailoring prostate cancer treatments towards the individual man and his cancer. It will help work out the best treatment for each man to have – or to avoid – and the right time to have it.

A recent clinical trial showed that nearly 30 per cent of men with advanced prostate cancer responded to an anti-cancer treatment called olaparib. This type of drug only works for men who have a mutation in one of the genes that controls how cells repair broken DNA.

Now, Professor de Bono and his team want to develop a simple genetic test to work out which men have this mutation before they decide what treatment to give them.
Movember Foundation Translational Research Awards

Thanks to The Movember Foundation, we’ve funded two projects that aim to take game-changing science from the laboratory bench into patient care over the course of the grant.

Dr Gerhardt Attard
The Institute of Cancer Research £859,367

Abiraterone vs docetaxel: could the clue lie in the androgen receptor?

Dr Attard, from The Institute of Cancer Research and the Royal Marsden Hospital, will run a clinical trial called PARADIGM. The overall aim of this trial is to determine whether a simple blood test that looks for changes in the Androgen Receptor gene can determine the treatment that’s most likely to work for a man with advanced, hormone resistant prostate cancer.

The trial will first seek to confirm previous findings that second-line hormone therapies like abiraterone don’t work well for men with these Androgen Receptor gene changes. It will also determine whether these same men would actually do better on chemotherapy instead.

Overall, the PARADIGM trial should clearly demonstrate whether testing men for changes to the Androgen Receptor gene as soon as their cancer becomes hormone resistant, then offering them treatment based on the result of that test would mean that men get access to the medication most likely to work for them the first time round.

Dr Andrew Feber
University College London £333,951

Spotting aggressive cancers sooner by studying changes in the way cancer DNA looks and works

Dr Feber and his team have developed a test that looks at prostate cancer specific DNA modifications that can be detected in the blood of men with prostate cancer. In this project they want to compare their new liquid biopsy based test to the current standard diagnostic pathway (PSA test and TRUS biopsy). They’ll work out whether this could be a quicker, cheaper, less invasive and more accurate way to diagnose aggressive forms of prostate cancer than we have at the moment.

This sort of technology could also be useful in monitoring how well men are doing after a first-line prostate cancer treatment, and keeping track of whether or when the cancer comes back. The team will also test whether their epigenetic test gives a timelier, cheaper and more precise indication of when or if the cancer returns than monitoring a patient by PSA tests and imaging.
Science in focus: Liquid biopsies

Prostate cancers have always sent out clues to their molecular weaknesses, but it’s taken years of research to reach the point where we can not only see those clues, but also start to unravel their meaning.

Scientists have known that cancers shed cells and genetic material into the bloodstream for a while now, but the technology to be able to isolate this material, and then ‘read’ and interpret what it means has finally caught up. This has resulted in a new way to diagnose, understand and monitor men’s prostate cancer, called a liquid biopsy. This is the real cutting edge of prostate cancer research.

Liquid biopsies could be used to predict how aggressive a man’s cancer might be, work out which treatments will work best for him and monitor how well he’s responding to treatment. If the treatment isn’t working, a liquid biopsy can help doctors understand why.

This means that it’s quite possible that a tissue biopsy, even of the metastatic site, would miss the cells – or even the tumour – that has the key mutations we need to find. Not only that, but once a man is already receiving treatment, if doctors want to monitor how well he’s doing, a series of tissue biopsies just isn’t practical. It would be both physically demanding and incredibly invasive for a man who may well be feeling increasingly poorly anyway, not to mention expensive and time consuming.

On the other hand, the demands on the patient from a liquid biopsy are minimal – it’s just a blood test. And because the tumour cells or DNA circulating in the blood are likely to come from all parts of all tumours, there’s a higher chance that this will reveal the clues to which treatment will work best, how well a current treatment is working, or why a treatment may not be working as well as expected.

Developing, refining and validating this new technology to get it into the clinic as soon as possible is going to play a big part in cancer research over the next few years. And it’s important that prostate cancer doesn’t get left behind. That’s why we’re already using funding from The Movember Foundation to support projects that will use liquid biopsies to deliver precision medicine to men with prostate cancer. You can read more about some of these projects on the previous page.
A prostate cancer risk prediction tool for primary care practice

Dr Chris Parker
The Institute of Cancer Research
£310,206

Thanks to the generous donations and hard work of our supporters, we funded Dr Chris Parker to lead an international team of scientists from the UK, the Netherlands, Canada and the USA. They will develop a risk assessment tool to work with GPs’ existing computer software to give a better indication of a man’s risk of having aggressive prostate cancer. It will then give men and their GPs clear instructions about what to do next, whether that’s to go straight to a urologist for further investigation, not to worry about further testing for another few years, or something in between.

The team will use their expertise in developing similar risk tools in other countries, but will concentrate on ensuring that the tool works in a UK setting.

To start with, the team will concentrate on developing the calculations behind the risk assessment tool, and will refine it using a series of statistical tests to determine exactly which risk factors should be included. This might include anything from a man’s age, family history and PSA level to new genetic and protein biomarkers.

The risk assessment tool will also include an estimate of an individual’s life expectancy based on other diseases or life-threatening conditions they might have. This is important to take into consideration, because it helps to create a more detailed picture of a man’s overall health, and to determine the likely impact that prostate cancer will have on his life. This will in turn affect the action a doctor might recommend a patient to take.

Thank you to Prostate Cancer UK for taking a global leadership role in this important area of prostate cancer risk. I am truly confident that this is not only achievable, but will massively improve the outlook for men at risk of prostate cancer.

Professor Robert Nam, Sunnybrook Health Sciences Centre, Toronto

The advantage of this system is that because each calculation uses information from a particular individual, the recommended action will be tailored for each man depending on the best course of action for him.

Once the calculation has been developed, it will be tested with GPs and men to make sure that it’s easy to use, and gives reliable and clear results, so that it’s acceptable to both GPs and men. It is likely that the risk assessment tool will require more extensive, rigorous testing in a clinical trial, although funding for this will be dependent on the initial results from this first phase of the project.

Whether it’s as part of a large scale clinical trial, or already in wider use, we hope that a large number of men will have access to the tool in around three years, and that it will be in the hands of all GPs within five.
Stockholm-3:
Another piece of the puzzle

A Swedish trial of 47,688 men aged between 50 and 69 investigated whether a new panel of genetic and protein biomarkers could be used in a screening programme to reduce the number of men being sent for a biopsy. Everyone who had a PSA level of 1ng/ml or more was given a blood test to look for these new biomarkers. The aim of this trial was to see whether this test could give a reliable indication of whether or not a man had aggressive prostate cancer.

In the end, 32 per cent fewer men were biopsied as a result of a positive test on the new panel, compared to basing the decision to biopsy on a PSA level of 3ng/ml or more. The total number of negative biopsies went down by 44 per cent overall. Together, these results give compelling evidence that the Stockholm-3 risk assessment model can dramatically reduce the number of men undergoing unnecessary biopsies, without reducing the number of aggressive prostate cancers detected.

This study was only run in Stockholm, which doesn’t have the same levels of ethnic or socio-economic diversity as the UK population. This means we need to test whether this new test panel will work as well in the UK as it did in Sweden, as well as working out whether it will work both practically and financially within the NHS. This will involve another clinical trial to validate the results in the UK.

We’re running a funding call for applications to validate this work in the UK, and hope to make an award later in the 2016/17 financial year. If the results hold up, they can be built into the risk tool.

This is exactly what we want our risk tool to achieve, so we’re really excited by this research, and how it will fit within our risk assessment tool. However, it’s not quite ready to be added in straight away.
Personal awards

Thanks to The Movember Foundation, we’ve awarded four new PhD studentships. This year, we used our PhD scheme to fill a specific gap that is likely to limit progress in prostate cancer research. There aren’t enough researchers with expertise in both statistics and prostate cancer, so this scheme was designed to train bioinformaticians to PhD level in a bid to build a talent pool of future experts.

Claudia Buhigas
Supervised by Dr Daniel Brewer, University of East Anglia
£83,979

The prostate cancer field effect could hold the key to understanding how many different cancers can form apparently independently in the same prostate. But very little is known about exactly what the field effect is, and how it might work. Claudia will hone her expertise in data analysis so that she can develop mathematical and computer models to better understand this process, and how it might predispose the prostate to become cancerous.

Sharmila Rana
Supervised by Dr Hector Keun, Imperial College London
£126,050

MicroRNAs are small chains of genetic material that can influence when and where particular genes are turned off or on, which can in turn affect cell behavior. Sharmila will collate information about microRNAs from researchers around the world. She will then use the latest statistical analysis and computer modelling techniques to extract the data that could help us understand which prostate cancers are aggressive, and which might respond best, or be resistant to, certain types of treatment.

George Seed
Supervised by Professor Johann de Bono, Institute of Cancer Research
£103,923

Professor de Bono’s team has been involved in a huge number of clinical trials of new prostate cancer treatments. This means that they now have a huge ‘bank’ of genetic data from prostate cancer biopsy and blood samples, which George will collate and analyse to work out which treatments, and which clinical trials, might work best for each man.

Ronnie Rodrigues Pereira
Supervised by Dr Crispin Miller, University of Manchester
£139,722

Ronnie will use high powered computational techniques to build predictive models of how particular treatments might affect gene activity, which would in turn influence how cancer cells behave. He hopes that this will allow us to predict with far greater accuracy than is possible now, how an individual patient will react to a particular treatment before it is given to them.
Prostate Cancer UK Trailfinders Travelling Prize Fellowship

James Grey
University of Newcastle
£210,216

This year, our first Travelling Prize Fellowship, funded by the Mike Gooley Trailfinders Charity, was awarded to James Grey at the University of Newcastle. James will take up his Fellowship after completing his Prostate Cancer UK and Movember Foundation funded PhD at the end of 2016. We aim to use this new Fellowship scheme to support the most outstanding researchers at a vital stage in their career. This is the point where the right type of funding could fast-track the development of their own research programme, expand their research horizons and develop scientific independence. This means they will be able to deliver high quality, high impact research to make a difference for men with prostate cancer sooner. These rising stars will also gain vital experience from working with the best researchers in the UK and overseas, sharing knowledge and techniques and generating new collaborations in the fight against prostate cancer.

James’ PhD focused on identifying new drivers of prostate cancer growth that could be targeted by existing drugs. He showed that these drugs were successful at slowing prostate cancer growth in the laboratory. Now he will go on to test these drugs in a more clinically relevant setting to help identify the population of patients that could benefit most, and the treatment, or combination of treatments that will control their cancer most effectively. As part of his Fellowship, he will spend a year at the Erasmus MC Cancer Institute in Rotterdam, where he will learn the necessary techniques to validate his findings in advanced prostate cancer models that mimic human tumours.

Prostate Cancer UK – Academy of Medical Sciences Starter Grant for Clinical Lecturers

Dr Adam Sharp
Institute of Cancer Research
£30,000

Dr Adam Sharp is working with Professor Johann de Bono at the Institute of Cancer Research. He will use his Movember funded Starter Grant to identify proteins that bind to one end of the Androgen Receptor, a key protein in driving prostate cancer growth. Hormone therapy usually blocks the Androgen Receptor from driving cancer growth for a while, but eventually the receptor changes and becomes resistant to treatment. However, the end part of the Androgen Receptor that Dr Sharp is studying stays the same after these alterations. Dr Sharp hopes that identifying proteins that bind to this part of the protein, and help it to promote cancer growth even in the absence of hormones, will open up a new avenue for drug discovery and treatment of hormone resistant prostate cancers.
Where are they now?

Our Personal awards are designed to nurture the next generation of scientific experts, to maintain the level of interest, investment and expertise in prostate cancer research into the future. This year, we conducted a follow up survey of previous award holders, and asked the question – where are they now?

Dr Niall Byrne

Niall was a PhD student in Professor Stephanie McKeown’s lab at the University of Ulster from 2009 to 2012 and is now a postdoctoral researcher at the Garvan Institute in Sydney. His research now focuses on how dormant cells in the bone may contribute to prostate cancer spread in disease that’s come back after a first treatment. Niall says:

“My Prostate Cancer UK PhD studentship provided the much needed support and training essential to a career in medical research. My PhD was critical in securing my position at the highly renowned Garvan Institute in Sydney, continuing my work in prostate cancer research.”

76% responded to the survey

77% of the respondents remain in research

60% of those in research are still focused on prostate cancer
Miss Alice Hartley

Alice is a Urology Registrar and held a one year Movember Foundation funded joint Prostate Cancer UK / Royal College of Surgeons Clinical Training Fellowship in Professor Craig Robson’s lab in Newcastle University. She used the information and skills she learnt during this one year Fellowship to successfully apply for a Cancer Research UK Clinical Research Grant to continue her work into a PhD. Alice says:

“I am continuing with the project I started whilst on my Prostate Cancer UK / RCS grant. This is now a PhD and I am studying the expression of embryonic stem cell factors in circulating tumour cells from metastatic prostate cancer patients.”

Dr Satoshi Hori

Satoshi completed a Prostate Cancer UK – MRC Clinical Training Fellowship with Professors David Neal and Vincent Gnanapragasam at the University of Cambridge from 2011 to 2014. His current research goal is to develop new strategies for the early detection and treatment of prostate cancer. Satoshi says:

“I have now obtained my PhD and FRCS (Urol) and am nearing the end of my Higher Urology Surgical training. During my current Academic Clinical Lectureship, I intend to obtain further training in prostate cancer surgery to a Fellowship level and to further my research experience and portfolio in prostate cancer.”
Dr Webber hopes to use exosomes, which are tiny ‘bubbles’ that are released from cells, to design a blood test to distinguish between aggressive and non-aggressive prostate cancer.

Exosomes are so tiny that they’re difficult to see or measure, even with really powerful microscopes, so it’s taken scientists a long time to realise that they play an important role in prostate cancer development. Some exosomes have particular sugar-protein structures attached to the outside, and Dr Webber and his team believe that these are the molecules responsible for driving cancer growth. The team has spent the first year identifying exactly which of these sugar-protein complexes are common to prostate cancer exosomes.

They’re now going to try and use this knowledge to design a test to identify these molecules in blood from men with prostate cancer. They will first check that their test can distinguish between blood from men with and without prostate cancer, and then see whether they can go a step further and distinguish between men with high and low risk disease.

At the same time, they’ve found a way to remove the sugar-protein molecules from prostate cancer exosomes, and will test what effect this has on the cells that surround cancer tissue. They predict that the loss of these molecules will prevent cancer-related changes taking place in these cells.

The ultimate aim of Dr Coffey’s work is to find a new way to treat advanced prostate cancer that no longer responds to hormone therapy. She will do this by identifying the proteins that regulate how the Androgen Receptor turns on or off other genes, which control things like cancer cell growth and movement. She believes that blocking these regulator proteins might provide a ‘backdoor’ mechanism to stop the Androgen Receptor driving prostate cancer cell growth even once it’s become resistant to hormone therapy.

During the first two years of her five-year Fellowship, Dr Coffey and her team have carried out an extensive programme to work out for sure which proteins are really doing this regulating work. Next year they will test whether prostate cancer cells that are hormone resistant are regulated by the same proteins. At that point, they’ll know which ones are most likely to be possible new drug targets for hormone resistant prostate cancer.
Dr Wafa Al-Jamal
University of East Anglia
Grant started: 2014

Dr Al-Jamal’s work aims to improve the way that chemotherapy is given to men with prostate cancer by aiming it specifically at cancer cells. She believes that her new drug delivery system will mean that fewer normal cells are exposed to chemotherapy drugs, which will reduce the side effects of treatment.

In the first two years of her Fellowship, Dr Al-Jamal and her team have developed both the ‘packaging’ to deliver the drug in, and a special form of the drug that will only be activated in the presence of prostate cancer cells.

The drug’s packaging is made of incredibly tiny packets called liposomes. These have a targeting protein on the outside that is attracted to another protein called PSMA, which is only found on prostate cancer cells. The liposomes also contain minuscule magnetic particles, which heat up to just above body temperature when a magnetic force is applied. This isn’t hot enough to damage the cancer cells or the proteins they express (so the targeting system will still work), but it is enough to break apart the liposome, so releasing the drug at the cancer site.

Dr Al-Jamal has also been working on a way to make sure that when the drug is released into the tissue, it only attacks nearby cancer cells. She has done this by developing what’s known as a prodrug. The chemotherapy drug is chemically altered to make an inactive form. When the prodrug is released into the cancer cell environment, it comes into contact with PSA protein. This activates the chemotherapy treatment.

Over the rest of her Fellowship, Dr Al-Jamal will finish testing the effect of both the heat and the chemotherapy on prostate cancer cells, and then combine the prodrug with the packaging and test how well both parts work together.
A look to the future: Improving treatments for advanced prostate cancer

One of the most important ways we can stop prostate cancer killing so many men within the shortest possible timeframe is by learning the best way to use treatments that already exist. These treatments are already in the clinic, and in some cases already approved for other uses. Making these drugs work harder for us will save years of development time, and millions of pounds, and more importantly will prolong the lives of men with advanced prostate cancer.

Here are some of the ways this is happening.

Giving an old drug at a new time

The rules about drug development and testing mean that all of the drugs we currently have to treat advanced prostate cancer were developed as ‘end of life’ treatments; to give to a man whose cancer had become hormone resistant and who had no other options left. But do we really need to wait that long before these drugs can be useful? If we hit the cancer harder, earlier on in a man’s treatment (when he may also be feeling stronger), will the same drugs have a bigger effect?

The biggest trial to test these ideas so far is the STAMPEDE trial. This has been ten years in the making, so the highly anticipated first results made quite a splash when they were announced last year.

They found that giving docetaxel – a type of chemotherapy – to men who had been newly diagnosed with prostate cancer that had spread around the body, at the same time as hormone therapy, had an unprecedented 15 month survival benefit. We worked with NHS England to make this available on the NHS to men newly diagnosed with advanced disease just two weeks after the results were published.

The ADRRAD trial (see page 6) is taking a similar approach, and if the initial toxicity study is successful, we hope to see similar benefits once the full trial commences.

Giving an old drug, but only to the right men

There are many different variations of advanced prostate cancer, each driven by different genetic changes. These variations may affect how that particular cancer responds to treatment, so our current ‘one size fits all’ approach to treating advanced prostate cancer means that some men do really well on a particular treatment, while others don’t benefit at all. And working out which men fit into which group is going to be the next big game changer in treating advanced prostate cancer.

They found that giving docetaxel – a type of chemotherapy – to men who had been newly diagnosed with prostate cancer that had spread around the body, at the same time as hormone therapy, had an unprecedented 15 month survival benefit. We worked with NHS England to make this available on the
The first clinical trial to test this approach in prostate cancer is the TO-PARP trial, led by Professor Johann de Bono and Dr Joaquin Mateo at the Institute of Cancer Research in London. This trial specifically looks at men who have a change in the genes responsible for repairing damaged DNA. Their previous work showed that this could be up to 30 per cent of men with advanced disease. These mutations make the cell more likely to become cancerous, but also mean that it’s likely to react well to treatment with a type of drug called a PARP inhibitor. The PARP inhibitor being used in this trial is called olaparib and was originally developed and used to treat women with ovarian cancer. The latest part of the trial will assess exactly how well olaparib delays cancer progression and increases survival for these men.

Of course there are another 70 per cent of men who don’t have a DNA damage repair mutation, and understanding what drives their cancer and how best to treat it is a huge focus of our research funding at the moment.

Giving an old drug a new lease of life

One of the fastest ways to get new drugs into the clinic is not to use new drugs at all, but to investigate new uses for old drugs. The two most talked-about examples are statins, originally developed to lower cholesterol in people at risk of coronary heart disease, and metformin, a diabetes treatment.

Various reports have suggested that statins might have a function in preventing prostate cancer, or delaying disease progression, and we’re funding research, like that of Professor Hing Leung at the Beatson Institute in Glasgow, that aims to address this question.

Overall, the clinical and scientific jury is still out on metformin for prostate cancer. Although there are hints that it might be beneficial, there isn’t yet any solid clinical evidence showing its benefits. However, it’s a cheap and readily available treatment with minimal side effects, so any good evidence of benefit will be extremely welcome if and when it comes in.

Giving the right drug, at the right time, to the right man

To really make radical inroads into the number of men dying of this disease, as we have pledged to do, we need to bring all this information together. We need to find a way to give the right drug combination, to the right man, at the right time; to be precise in the way we treat a man’s cancer. Not just a blanket treatment available to all men at a particular stage of the disease, but a treatment that is accurately matched to his cancer and the way it’s developing.

That’s why we’re working to fund the research that will make this a reality in prostate cancer. So far we’ve brought the key researchers, clinicians and statisticians we think need to be involved in a trial of this scale, together. This includes some of the people who were instrumental in running the STAMPEDE trial, as well as those who have already helped set up similar trials for lung and colorectal cancer.

This is going to take a number of years to pay off, but – and it’s a big but – when it does, it will take us a long way towards our goal of halving the number of men dying from advanced prostate cancer each year.
Thank you

Thank you to all the researchers, peer reviewers, volunteers, fundraisers and supporters who have contributed to the success of our research programme this year. In particular, we’d like to thank the members of our Research Advisory Committee, Research Strategy Group, and Grants Advisory Panel; thanks to them we were awarded a Certificate of Best Practice by the Association of Medical Research Charities for having ‘the highest standards of accountability and probity in the allocation of grants and awards for research’.

Thank you also to the Trusts, Foundations and individual donors, including those who choose to remain anonymous, who have made such a difference this year:
- Mike Gooley Trailfinders Charity
- The Margaret Rolfe Charitable Trust
- The Philip King Charitable Trust
- Robert Luff Foundation Limited
- The Eranda Rothschild Foundation
- Hospital Saturday Fund
- George A Moore Foundation
- Holbeck Charitable Trust
- Tom and Sheila Springer Charity
- The Stanley Grundy Foundation Limited
- Peacock Charitable Trust
- Lord Barnby’s Foundation
- Garfield Weston Foundation
- The Hugh Fraser Foundation
- The Steel Charitable Trust
- Hoover Foundation
- Scott Eredine Charitable Trust
- J P Moulton Charitable Foundation
- The Patrick and Helena Frost Foundation
- Cadogan Charity
- Pam Chaplin
- John Stokes
- Paul Thompson
- Aslam Merchant
- Edward Clucas
- Gareth Hughes
- The Distinguished Gentlemen’s Ride

A special thanks also to our funding partners, The Movember Foundation. The Movember Foundation is the leading global organisation committed to changing the face of men’s health. Prostate Cancer UK is the main beneficiary of the Movember campaign in the UK. For the last ten years, the amazing efforts of Mo Bros and Mo Sistas from across the UK have significantly contributed to our research initiatives and have supported men by investing in our services.

We’d also like to say a special thank you to the Pioneers; a vital part of Prostate Cancer UK and an exceptional group of highly motivated individuals. Like us, they envisage a dramatically different future for men with prostate cancer. By pledging regular support they invest in world class research for effective diagnosis and treatment of prostate cancer.

For more information about joining the Pioneers please contact caroline.gellatly@prostatecanceruk.org

“Becoming a Pioneer is much more than a commitment to donate. It’s a commitment to be part of a powerful network of leaders driving a movement for change.”

Professor Mark Emberton – Founder Pioneer, Dean of UCL Faculty of Medical Sciences and Honorary Consultant Urologist UCLH NHS Foundation Trust
Thank you!
For more information visit prostatecanceruk.org/research
facebook prostatecanceruk
twitter @ProstateUK